
International Journal of Thermophysics, Vol. 7, No. 2, 1986 

Forced Modes of Dilute Binary Gas Mixtures 1 

B. Kamgar-Parsi  2 and E. G. D.  Cohen e 

Anomalous forced sound dispersion in dilute binary gas mixtures is studied as a 
function of the mass ratio of the two components, using one- and two-tem- 
perature theories as well as different interparticle potentials. For a disparate- 
mass mixture, such as He-Xe, the results are compared with previous work due 
to Johnson et al. It is suggested that even for nondisparate-mass mixtures, a 
one-temperature treatment is not appropriate. 

KEY WORDS: anomalous sound dispersion; dilute binary gas mixtures; dis- 
parate-mass mixtures; forced modes; He-Xe mixtures; two-temperature effects. 

1. I N T R O D U C T I O N  

The forced modes of a fluid determine its response to external disturbances. 
When the frequency, o9, of the disturbance is low, the modes obtained from 
the usual hydrodynamic equations are sufficient. At higher frequencies, 
however, the modes must be obtained from kinetic equations. For  dilute 
binary gas mixtures, these equations are two coupled Boltzmann equations 
(see Burgers [1] ,  for instance). Of particular interest are disparate-mass 
binary mixtures, that is, mixtures with very different molecular masses. In 
such mixtures, because of the slow exchange of kinetic energy between the 
two components,  there exists a frequency regime (just beyond the 
hydrodynamic region) which is characterized by each component  having its 
own temperature [2].  An interesting example, viz., that of a He-Xe  
mixture, where two-temperature effects appear, has been discussed in great 
detail by Johnson and co-workers [3, 4]. 

In fact, Huck and Johnson [3]  have predicted a peculiar behavior in 
the forced sound propagat ion in dilute disparate-mass binary gas mixtures. 
Thus, at frequencies higher than a critical frequency o9o and concentrations 
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of the light component Xl, exceeding a critical concentration Xc, the speed 
of sound increases steeply with external frequency co, while for Xl < xo the 
speed slightly decreases with o~ (cf. Fig. 1). 

Although this phenomenon also occurs in an ordinary hydrodynamic 
treatment of such mixtures, the critical frequency ~o c is too high for 
hydrodynamics to be valid and a two-temperature extension of 
hydrodynamics is necessary. On the basis of such a theory, Huck and 
Johnson predicted a behavior of He-Xe mixtures that was subsequently 
confirmed by sound velocity measurements of Bowler and Johnson [4]. 
They related this behavior to the fact that the sound mode and another 
hydrodynamic mode become identical at ~o = O~c for xl = xo. 

In this work, we investigate two-temperature effects on the predictions 
for xc and c,o, not only for disparate-mass mixtures but also for mixtures 
with arbitrary mass ratios # = maim2, where m 1 and m 2 are the masses of 
light and heavy molecules, respectively. In Section 2, we briefly discuss the 
forced modes in the hydrodynamic regime and their extensions to higher 
frequencies. In Section 3, theoretical predictions for xc and ~or for mixtures 
of He-Xe, based on one- and two-temperature theories are compared with 
experimental estimates. And in Section4, we present our results for 
mixtures with arbitrary mass ratios. 

2. FORCED M O D E S  OF DILUTE BINARY MIXTURES 

We consider the behavior of a dilute binary gas mixture in equilibrium 
due to a small external disturbance of frequency o~. The disturbance 
propagates through the gas by exciting its forced modes. To obtain these 
modes, we assume that the disturbance is sufficiently weak that only linear 
deviations from equilibrium, 6a = a -  ao, need be taken into account and 
that the dependence on position 7 and time t of the perturbed variables 
6a(f, t) that describe the fluid are of the form 6a(f, t ) =  ha(k, ~ ) e  i(~f-~ 
Then by requiring that the linearized fluid equations have nontrivial 
solutions for the 6a(k, co), we obtain a dispersion relation of the form 
F(k, a~)=0, where k =  I/~l (cf. Foch and Ford [5]). For forced modes we 
solve the dispersion relation for k = k(~o), where ~o is real, from which we 
may calculate the phase velocity v =c~/Re k and the spatial damping 

= Im k. In this work, we consider only the longitudinal (i.e., parallel to ~) 
part of the disPersion relation, which contains the sound modes. 

2.1. Forced Modes at Low Frequencies 

When the frequency of the disturbance is low such that ~oz k <~ 1, where 
z~ is the relaxation time of the slowest of the variables, a(f, t), the 
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Fig. 1. Reduced propagation velocity v/v o and reduced damping 
e/% of the forced modes of dilute mixtures of He-Xe at p = 1 atm 
and T =  25~ as a function nf the reduced frequency onzT. The 
modes are calculated from the two-temperature 13-moment 
equations for a hard-sphere interparticle potential; ( a )xH ,=  
0.445 < x~; (b) xH~ = 0.465 > x~. The modes are indicated by (S) 
sound, (H) heat, (D) diffusion, and (K) kinetic, v0 is the velocity 
of sound at zero frequency and % = (v0rzr) -1. Not plotted is the 
kinetic mode damping, which runs from 1.6 at oJzzT=0 to 2 at 
cozzr = 1.4. The arows indicate the value of coc~zT. 
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hydrodynamic equations describe the behavior of the system. In that case, 
the variables, a(~ t), are the local number densities, the local temperature, 
and the local longitudinal velocity, which are related to the first three 
velocity moments of the nonequilibrium distribution functions that describe 
the mixture. 

The dispersion relation obtained from the linearized hydrodynamic 
equations [6] has the following form: 

A3 k6 + A 2 k  4 + A l k  2 + Ao = 0 (1) 

where the Ai are functions of the frequency as well as of the transport and 
thermodynamic properties. Equation (1) yields three types of modes: 
sound, heat, and diffusion. There are two of each type, propagating in 
opposite directions, so that a total of six forced modes is present. Here, we 
consider only one set of modes, say, those that propagate in the +/~ direc- 
tion. According to hydrodynamics, these forced modes have the following 
frequency dependence as ~-~0:  sound mode Vs~const., as~(D2; heat 

1 1 1 1 

mode vn ~ ~o~, an ~ co~; and diffusion mode Vl~ ~ co2, aD ~ co~ [4]. 

2.2. Forced Modes at Higher Frequencies 

In order to describe the response of the fluid to higher-frequency dis- 
turbances, one must, in addition to the hydrodynamic variables, take into 
account explicitly more velocity moments of the distribution function. For 
the case of a dilute simple gas, as a first step beyond hydrodynamics, Grad 
[7] derived from the Boltzmann equation a set of 13 equations, whereby in 
addition to the usual hydrodynamic variables, also the stress tensor and 
the heat flux vector were included in the description of the fluid. Burgers 
[1] generalized the 13-moment method to the case of binary mixtures, 
where the usual assumption of a common local equilibrium of the two 
components was not made. In fact, Burgers allowed each component to 
have its own density, temperature, flow velocity, stress tensor, and heat flux 
vector. The linearized two-temperature 13-moment equations derived from 
Burgers' nonlinear equations are given in the Appendix. 

The case of disparate-mass binary mixtures is especially interesting. 
Grad [2] already noted that in such mixtures the exchange of kinetic 
energy between light and heavy molecules is very slow. Thus, he conjec- 
tured that the approach to equilibrium will take place in three stages. First 
the light molecules reach local equilibrium with temperature T1, in a time 
~1, 3 then the heavy component reaches local equilibrium with temperature 

3 In principle, in a disparate-mass mixture, a different local equilibrium for the two com- 
ponents means different values for their number densities, velocities and temperatures. While 
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T2 in a time "c2, finally followed by the equilibration of the two different 
species temperatures in a time z~r, after which the system behaves 
according to the usual one-temperature equations of hydrodynamics. The 
times ~1 and r2 are the mean-free times associated with the light and heavy 
components, respectively, and 72AT~722/N/]~'~'~I/[2 [-8], with #=ml/m2 the 
mass ratio. Therefore, Grad suggested that the first step beyond ordinary 
hydrodynamics for disparate-mass mixtures should be a two-temperature 
hydrodynamics. 

Goebel et al. [8] have derived two-temperature hydrodynamic 
equations. Starting from the two-temperature 13-moment equations of 
Burgers, and expanding in powers of the mass ratio # (in fact #{), they 
found that in a disparate-mass mixture, of all the nonhydrodynamic 
moments, the temperature difference, indeed, had the longest relaxation 
time. Thus by retaining only the temperature-difference equation and 
approximating other moment equations by linear laws, they obtained two- 
temperature hydrodynamic equations. 

The dispersion relation derived from both the two-temperature 
hydrodynamic equations and the two-temperature 13-moment equations 
have the following form: 

B4 ~8  q- B3/~ 6 h- B2/~ 4 + B~/~ 2 + B 0 = 0 (2) 

where the coefficients B,. differ in the two cases and /~ is a dimensionless 
wavenumber defined in Eq. (All). Thus besides the six hydrodynamic 
modes discussed before, an additional pair of kinetic modes, propagating in 
opposite directions, appear. The coefficients Bi are essentially determined 
by the dimensionless frequency (5, defined in Eq. (A11 ), the molar fraction 
Xl of the light component, the mass ratio #, and the diameter ratio a = 
al/a 2 (or force constant ratio), where a1 and o- 2 are the diameters of the 
light and heavy molecules, respectively. 4 

their number  densities are fixed, the local velocities can be shown to relax much faster (in 
fact by a factor #) to a common value than their local temperatures [8] ,  so that only two- 
temperature, and not two (local)-velocity, extension of hydrodynamics has to be considered. 

4 For hard spheres there are three relevant diameters: a l ,  or2, and ax2. a 1 and cr 2 are usually 
derived from pure gas viscosities, while or2 can be determined either from the mutual  dif- 
fusion coefficient [9]  or from the mixing rule a12 = (al + a2)/2. The B i or the xc and Wc are 
not  very sensitive to either choice of a12; similarly for the force constants  in the case of 
Maxwell molecules. 
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3. RESULTS FOR He-Xe  MIXTURES 

In their experiments on He-Xe mixtures, Bowler and Johnson [4] 
observed the sudden change in the sound propagation velocity near a par- 
ticular concentration by varying the molar fraction of helium. They 
estimated the critical molar fraction xc-,~0.5 and the critical frequency ~c 
4.4• 108 s -s, at a pressure p =  1 atm and a temperature T =  25~ 

In Table I, we report, for comparison, theoretical predictions for xc 
and co~ calculated with various methods, for hard-sphere and Maxwell 
molecule interactions. The experimental information used, in addition to 
the molecular mass ratio # = 4/131.3 ~0.03, is the pure gas viscosities [10] 
and the mutual diffusion coefficient [11 ] to obtain the diameter ratios or 
force constant ratios [9]. 

The most striking feature is that the difference between one-tem- 
perature and two-temperature theories is much larger than that between 
hydrodynamics and the 13-moment method or between different interpar- 
ticle potentials. 

The predictions of one-temperature theories, i.e., the usual 
hydrodynamic equations ( 1 T - H )  and the one-temperature 13-moment 
equations (1T-13),  which are the Burgers equations with a common tem- 
perature for both species, 5 are very close to each other and in clear dis- 
agreement with the experimental results. On the other hand, the predic- 
tions of two-temperature theories, i.e., the two-temperature hydrodynamic 
equations ( 2 T -  H) and two-temperature 13-moment equations ( 2 T -  13), 

5 The difference between the predictions of the 13-moment Burgers equations for a disparate- 

mass mixture with a common temperature and with a common temperature as well as a 

common velocity for both species is small: 6% for xc and 2% for r for He-Xe mixtures. 

Table I. Predictions for Mixtures of He-Xe at p = 1 atm, T = 25 ~ 

Maxwell Hard sphere 

xc coc (10 s s -z)  x,  o~ c (10 s s -1) 

1 T - H  0.253 + 0.001 a 5.5 ~ 0.310 • 0.001 6.7 

1 T-- 13 0.256 + 0.003 5.4 0.322 • 0.003 5.8 

2 T -  H 0.457 • 0.002 a 4.8 a 0.435 • 0.002 5.3 

2 T - 1 3  
Johnson 0.495 i 0.005 4.7 0.505 i 0.005 4.3 

This work 0.482 + 0.002 4.7 0.455 • 0.002 5.2 

a In agreement with Johnson and co-workers. 
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are not only close to each other but close to the experimental values as 
well. This clearly indicates the existence of different species temperatures in 
a disparate-mass mixture. 

We obtain somewhat different numerical results than those reported 
by Bowler and Johnson [4] for the two-temperature 13-moment method. 
We do not know the source of this difference. We should remark, however, 
that we have used the SMP (symbolic manipulation program) to obtain an 
analytic expression for the dispersion relation for an arbitrary mass ratio 
from the 13-moment equations, then later substituted specific values 
appropriate for He-Xe mixtures. The predictions of Bowler and Johnson 
are very close to their experimental estimates (and even overlapping for 
hard-sphere molecules), suggesting that the 13-moment approximation is 
sufficient to explain the experiment. However, our results seem to indicate 
that the inclusion of other higher moments, in particular, the flux of the 
heat flux--which has a relaxation time equal to that of the heat flux itself 
[-12J--will still make significant contributions. This could be at the root of 
the difference for xc and COc of our results and experiment. We note that the 
difference in xc and ~oo due to the interparticle potential is comparable to 
the difference between two-temperature hydrodynamic and two-tem- 
perature 13-moment theories (similarly for the one-temperature theories). 
In view of this and the considerable experimental uncertainty in xc and ~o~, 
we believe that a complete quantitative agreement between theory and 
experiment has not yet been obtained. 

In Fig. 1, we plot the propagation velocities and dampings of all the 
forced modes calculated from the two-temperature 13-moment equations 
for hard-sphere molecules as a function of the external frequency, for 
mixtures of He Xe under the physical conditions mentioned above. The 
sudden change in the velocity of the sound mode at higher frequencies can 
be seen as the molar fraction of helium is increased from below xo (Fig. la) 
to above xc (Fig. lb). The interfering mode which becomes identical to the 
sound mode for x = xc at co = coo is also indicated. In this case, it is the 
mode which has a heat mode-like behavior at low frequencies. As pointed 
out by Bowler and Johnson [4], the nature of the interfering mode is sen- 
sitive to the transport properties of the mixture and may be different in dif- 
ferent theories. For example, in two-temperature hydrodynamics it would 
be the diffusion mode that interferes. 

4. BINARY M I X T U R E S  WITH ARBITRARY MASS RATIOS 

The same effect that is described in Fig. 1 is also present in non- 
disparate-mass binary mixtures, although less pronounced. As a means of 
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Fig. 2. (a) xo and (b) oJczar as a function of the mass ratio ~ from various theories for hard- 
sphere molecules. The curves are calculated assuming that # = a3; the points refer to noble gas 
mixtures using experimental values for a. The results from various theories are shown as one- 
temperature hydrodynamics (I, A), one-temperature 13-moment (II, A), two-temperature 
hydrodynamics (III, O), and two-temperature 13-moment (IV, � 9  

investigating the importance of two-temperature effects in more normal 
(nondisparate-mass) mixtures, we calculated xc and e~c in mixtures with 
arbitrary mass ratios from one- and two-temperature theories. The results 
are shown in Fig. 2, where xc and ~oeT3r 6 are plotted as a function of the 
mass ratio ~, assuming hard-sphere interactions. The points correspond to 
mixtures of  noble gases with diameter ratios deduced from experiment 
[ 13 ], and the curves are calculated with the assumption that the mass ratio 
# and the diameter ratio a are related by/~ = a 3. The various curves have 
been drawn up until values of/~ for which an xo and an ~o exist. The rather 
good agreement between noble gas mixtures and the curves may indicate 
that xo and oJ~ are not too sensitive to the diameter ratio. We should 
remark that the two-temperature hydrodynamic equations are valid only 
when # <  1, while the two-temperature 13-moment method is valid for fre- 
quencies for which co%r is not much in excess of  unity. The one-tem- 
perature curves are valid as long as o9% < 1, where zi is the longest of the 
two mean free times zl and %. Hence, we have dotted the portions of the 
curves that cannot be trusted. 7 

6 Although Z~T has no special physical significance in one-temperature theories, it can, 
nevertheless, be calculated from the mutual diffusion coefficient as given in the Appendix. 

7 To extend these curves further, i.e., to obtain reliable results for higher values of ~o, one 
needs to include more moments than we have considered here. 
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One can deduce the following, however. 

(i) By comparing the one-temperature hydrodynamic with the one- 
temperature 13-moment curves, we see the increasing importance of higher 
velocity moments as the mass ratio approaches unity, while comparison of 
the one-temperature and the two-temperature 13-moment curves shows the 
importance of the two-temperature contribution. 

(ii) The somewhat surprising result is that two-temperature effects 
continue to remain important even in nondisparate-mass mixtures. The  
two-temperature effect, however, is then not the dominant effect for, say, a 
mass ratio # = 0.2, since its contribution is comparable to that of other 
moments. Hence these other moments have also to be taken into account 
to give a satisfactory theory. 

A P P E N D I X  

The nonlinear two-temperature 13-moment equations can be found in 
Section 2 of Burgers' book [I ]. Here we give the linearized version of these 
equations, and only those that contribute to the longitudinal part of the 
dispersion relation. The original 26 equations reduce, then, to 10. 

Burgers' equations are given in terms of t ~  species number density ni, 
temperature Ti, flow velocity ffi, stress tensor ffi, and heat flux vector qi of 
species i = 1, 2. Instead of n~, T~, and ffi we use the following variables: total 
number density n = n l  +n2, density difference An =nl/x~-n2/x2, average 
temperature T =  x~ T 1 + x2 T2, temperature difference 3 T =  T~ - T2, 
average flow velocity ff=(x~m~ffl +x2m2ff2)/m, and velocity difference 
u~=ff~-ff  2, where x, is the molar fraction of species i and m =  
xlm t + x2m 2. We also define mo=m, +m 2. 

We give the equations in a nondimensional form, where the densities 
�9 . I 

are reduced by n o, temperatures by To, velocmes by (k~To/rn)~, stress ten- 
sors by P0, and heat fluxes by (kBTo/m)lpo, where no, To, and Po are the 
equilibrium density, temperature, and pressure, respectively, and k B is the 
Bottzmann constant. The nondimensional form of a quantity y is denoted 
by 37, and its deviation from equilibrium by 637. Thus the linearized two- 
temperature 13-moment equations (the longitudinal part) are 

-io5 aft+ i/7 a~ = 0 

- ic.5 ~SAg + i/7 5~ = 0 

2 i~6f i+~xlx2 --i(5 6 ] '+  5 

(A1) 

(A2) 

2 
(mz-- m~) i~ &~ + ~ i~ 6Etl +-5 iF: (SEt2 = (A3) 
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--iGof~+i~6g+ x , x  2(rn2-ml)  i k 6 d ~ + i ~ o ~ + i ~ P l + i ~ z ~ f f  2=O (A4) 
m 

(-i~5+ l )6AT+si~6f f :+  iFcfOi- iFc6gh=O (A5) 

( (m m )  (X22  x~m~ 
-iff)+ 2mlma/ -mr G m2 ,/ 

(~11 -~2) m2 mlm2 xlml 

m i~6p~+C m fig h C m &~2= 0 (A6) 
x 2 m  2 "2 xlm'---~l 2 x2m~ 

4 4 
( -- i ~ + ~ ? l ) 6 P l + -3 x ~ i ~ f (t + -3 x ~ x ~ m z i ~c f l~ i ~: ~ gh 

Xl (4 -- 3A) 6P2 = 0  
2 

4 4 
( - i ~  + ~ (~P2 +-3 xzi~ (~ff --3 xlx2ml i~c (~w i~c ~q2 

(A7) 

x2 ( 4 -  3A) 6~1 =0 (A8) 
2 

5 ~ 5 m + m  _ _  
(-i~+&q~lc~Ol + s x i  m-~i~c~T+~xlx2~i~ccSAT i~r 1 

ml rnl ml 

5 x~rn2 
+~CXlX2m261~ - (11 - 4 B -  8A) 3~2 = 0 

ml "4 mo 
(A9) 

5 m ~ 5 
(--i(/~ "~ (J~q2) ~q2 "~ ~ X2 G i~(~T---2XlX2 m i~6d~.+rn ik 6P 2 

m2 m2 

45 Cxlx2ml 2 -  6w-X2ml"4-m---~o ( l l - 4 B - 8 A ) 6 q I = O  (A10) 

where 6fi, 6#, 61~1 , and 6~2 stand for the/~ component of the velocities and 
heat fluxes, and 6P1 and 6P2 for the/~/~ component of the stress tensors. 

Here the reduced frequency c5 and wave number ~ are 
t 

~=oo't~r , Fc= zzrk (All) 
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where 

monoD12 
(a12)  

T , 3 T  - -  2 p  0 

is the relaxation time of the temperature difference, with D12 the coefficient 
of mutual  diffusion in first Enskog approximat ion  [9] .  Fur thermore ,  

O~pl : X 1 - -  

( ~ q l  ~ X l  - -  

monoDy2 

2ql 

monoD12 

3r/1 

+ x 2 ( 1  -+- 2-~m 13mzA) (A13) 

§ x2 - -  m0 ~ + 2 A m 2 +  - B  m2]  (A14) 
m 1 mZJ 

and similar expressions obtain for (5e2 and (~)q2 with indices 1 and 2 
interchanged. Here t/i is the viscosity of species i in first Enskog 
approximat ion  [9 ] ,  and the coefficients A, B, and C are ratios of collision 
integrals defined on p. 163 of Ref. 9. 
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